

Table of Contents

[T Introduction
II'T The Source Engine
[l T Optimization Phases / Systematic Approach
.17 Layout
[11.2 T Brushwork
1.3 T Skybox
[11.4 7 Nodraw
1.5 7 Func_detail Displacements
[11.6 T Props Fade Distance
1.7 7 Hints
1.8 T Areaportals
[11.9 7 Occluders
[11.10 7 Gameplay & Lighting
IV 1 In-game Testing and Console Commands

V T Conclusion

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

| -Introduction

Processoptimization is the discipline of adjusting a process so as to optimize some
specified set of parameters without violating some conssrdihe nost common goals are
minimizing cost, maximizing throughput, and/or efficiency. When optimizing a procesgotie
is to maximize one or more of the process specifications, while keeping all others within their
constraints.

If you have ben playing my maps aeading my papers/tutorials, you would have
deduced by now that | am a big fan of optimization, and it is quite honestly my favorite topic
when it comes to the Source engine. But even
optimization, you wil do now after reading this tutoridl .

You might be wondering whiyam somuchinto optimization; the reason is very simple:
Most of my career so far revolved around optimizatiaore specifically process optimization.
How about that; not only | do optimation in the Source engine but | also do it in real life.

| started my career some 10 years agonmuHinational company, more precisely in the
manufacturing plant as process and industrial engineer doing all sorts of optimization projects
on different machines to increase outfafticiency, reduce downtime, minimize loss/ scrap and
improve quality. Later on | moved to another company where the scope of optimization was
wider. | was now in charge of operations management where the optimization veasriaoted
towardsfull processes such as manufacturing, supply chain, quality systems andsermmy
Master 6 s dvhagabaueimplementing@soces pt i mi zati on Jusechni que
innTi meo in small to medium enterprises (SME).

Optimization became second nature to me and was applicadery aspect of what |
do; thatés why | feel at home when it comes t

Make no mistake that, while visuals and gameplay are very important to any map,
optimizationisthedeabr eaker . Pl ay e-sosvisually-d | u mmicregpd map nand
will tolerate a slightly awkward layout, but no one will play a map that brings theirpiayn®
a slideshow of horriblow frame rate. Making an woptimized map meankat server admins
will only give it a first try and they will never touch it again.

What a waste then, of long and stressful hours spent building your level, to have no one
willing to playit except maybe yourseBut fear not as | shall go through thetiopzation
process in a methodical way, backed with screenshetg(ime and ireditor), in the hope of
making you intinrghegwnndrsbdigr diceasedThi s tut
right track to master the optimization process but wijuire perseverance from your side and
lots of test maps for trial and errexperience

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

II-The Source Engine

If you know your enemies and know yourself, you can win a hundred battles without a
single loss.

If you only know yourself, but not yooppponent, you may win or may lose.

If you know neither yourself nor your enemy, you will always endanger yourself.

This, now popular idiom used by military and nmilitary strategists, is takemdm the
|l ast verse of Chapter r3 fwro he Cehesenliiipoygdneral, The Ar
strategist and tacticid®un Tzu(544i 496 BQ. The book is highly recommended to read and can
prove very useful even on your personal life level.

You might be thinking that this is a nice idiom but what dobave to do with our
optimization i ssue. Remember the title of thi
against the Source engine; the strategy devised by Sun Tzu perfectly fits our scenario.

In order to win, you need to know yourself (skills adimization techniques), and
equally important is to know your fAenemyo (th
me for this comparisod)

Despite getting many updates and facelifts lastly seen in the CSGO version, the Source
engine stillpartlyrelies on rather old principles dating from the time of the original Quake
engine created by John Carmack in the-mitkties. Believét or not, Source still has bits and
pieces reminiscent of Quake.

The Source engine uses Binary Space Partition (BS&)reethod to compute visibility.
BSP is a method for recursively subdividing a space into convex sets by hyperplanes. This
subdivision gives rise to a representation of objects within the space by means of a tree data
structure known as a BSP tree.

Binary ace partitioning was developed in the context of 3D computer graplifes
1970s where the structure of a BSP tree allows spatial information about the objects in a scene
that is useful in rendering, such as their ordering from freMtack with respet to a viewer at a
given location, to be accessed rapidly.

Whi | e s o me isipitityfeomnm apoiste daip/p r o a cnostly imvgiemented i s
in real time,and vsibility is determinedf om t he current vi ewvspiity nt onl
from a reg o approach.

This is a kind of visibility calculation that is mostly used for indoor settings, making use
of the limited viewing possibilities between rooms. The rooms are termed cells, and doors
between these cells are called portals. In ecpreputaton stepthe data isnalyzedor the
potentiallyvisible set (PVS) from all positions in a single cell.

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

This is done for all cells in the data set. Current implementations in games use mostly
pre-computed level data in the final product, as@eputatbns are too timeonsumingo be
done after the loading of a level. One of the benefits of this method is that it is very efficient, and
that other things, like radiosity and shadows, can dfeecalculated in the same procedure, once
the process is stad out of the level editor. The main drawback is the enormous memory
consumption

The rendering process in the B&&h be described as followsh@map is carved up into
convex regions that become the leaves of the BSP tree, and anytime the camera is positioned
within a leve] it is contained in exactly one of these convex regions. The leaves are grouped
together with neighboring leaves to form carst exactly how these clusters are formed is
determined by the tool that creates the BSP file. For each cluster, a list of all of the other clusters
which are potentially visible is sted, ands referred to as the potentially visible set (PVS).

To rende the mapfirst the BSP tree is traversed to determine which leaf the camera is
located in. Once we know which leaf the cameria, we know which cluster isiin
(remembering that each leaf is contained in exactly one cluster). The PVS for theisinser
decompressed giving a list of all the potentially visible clusters from the camera location. Leaves
store abounding box which is used to quickly cull leaves that are not within the vidmisigm

Now if all this necessary explanation made yatrgj then fear not as | shall display
couple of screenshots where you can actually see the above in agamenPVS, leaves)

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

In this first screenshot (map de_cortona), you can see some red lines that connect with
each other to form a 3D cube (in this caseaangulacuboidto be more accurate). This 3D
cube is noaother than the famous leaf that we have been talking abodt;s cal | ed vi sl e
Source engine and | shall be using this nomination from now on in the rest of this paper.

In this second screenshot, the 3D cube is still there but now we see other red cubes of
differentsizes (and shapes) that are adja al connected to our initial visleaf. Thisthe
potentially visible set or PVS. It simply shows all other visleaves that the visleaf we are standing
in, can Aseeodo and have a direct | ine of sight
explainedearlier.

In simpler words, th&isibility from a regionis precomputed during compile time and
depends on the visleaf that the camera is in (the player is actually a camera) and not on the actual
location where the player is standing. If you are standing in visleaf A and toerpputed data
in the PVS instucts the engine that visleaves B,C and D are visible thesngine will draw
these leaves and their content regardless of where you stand in the visleaf A, and even if you, the
player, cannot directly see these visleaves

Now you need to clegrour mird and focusvith me. | am going to summarize the
optimization process and purpose in one easy sentence that you need to memorize. Understand
this sentence very well and you will understand the whole point of optimization and get on the

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

fast track to mastat. If you fail to grasp the meaning of this sentence, then ydwalwhys have
losing fights against the Source engine, randomly placing hints and areaportals without knowing
reallywhat you are trying to achieve.

Your ultimate goal is to make aspecit v i s | e aléasténweneod t h e
adjacent leaves thus preventing the engine from rendering the content of these
Aunseeno | eaves which wil!/ reduce engin

That s the essence of opt techiniquesthatwewiligm al |
through in this paper have a unified goal of
areaportals, or func_detail and nodraw, it is all about reducingutiv@er of visleaves in the
PVS, and reducing the amountaaintent to be rendered, thpieventing the engine from over
rendering.

If you are interested in going into more details of the BSP method and file format/coding,
then these 2 links shall prove to be very useful.

Paper byMax McGuire (07 June 2000)

Valve Developer Communitirticle

Il T Optimization Phases / Systematic Approach

As with any other process, a systematic approach that can be used in every map is highly
needed; there @bsolutely no point in adding occluders to your map as a first optimization job if
your layout, skybox and brushwork are thtain-optimized. The followings a standard
sequence that | personally use in my maps and that will help you make your opimgzatess
a fairly straightforward progression.

1.1 - Layout

As surprising as it may seem, optimization starts with the map layout itself. A poor layout
can be a hell to optimize while a wéttlought layout can pass through with minimal
optimization.If your layout is inherently wrongly devised, then all the hints and areaportals in
the world wondédt do you good.

Keep in mind the basics of the Source engine and the bsp discussed earlier in paragraph Il
to aid you in the layout planning: remember thatlifie is more suited to indoors, rooms and
corridors. But what about the outdoors | hear you ask? Well, the outdoors in Source are

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

http://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml
https://developer.valvesoftware.com/wiki/Source_BSP_File_Format

Acamoufl agedo indoors where streets/roads and
larger scale, and the same laytahniques apply.

Whenevelpossible, try to avoid unnecessary open areas with unbroken line of sight
(LOS), implement corners to break LOS, add solid structures like buildings or walls to also break
LOS. Note that it is possible to have an ogarded map (like de_lake in CSGO) without corners
and solid structures, however it will require more optimization and the end frame rate will be
| ower than a proper fAcorridoro map.

Your general map layout with comseand properly placed solid structures will greatly
help when you reach the phase of hints/areaportals and occluders. In fact, your layout should be
laid in a way to help implement these brusthese.t 6 s have a | ook @&t the | ¢
the next jc (classic figure of 8)blue lines denote areaportals while purple ones are hint brushes.
This is not the actual scheme that | used but it should give you an idea how the layout itself is
laid to help implement hints and areaportals at a later stage.

Comers are very useful to have those angular 45° hints to eliminate direct line of sight
between the opposite sides of the corner. Areaportals are generally placed at hallway/corridor
ends to delimit and separ at e aheexplainedlater;fodbt wor
now, just focus on their placement and its relation to the layout)

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

Another map with more opeended layout and gameplay: cs_east_borough.

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

@ BECE
L NS

Remembew h e n

her e)

To go into details about layout planning and sketching, | recomnegwiihg my

whi |l e

e

[told that

areaportals

outdoors i
proof. The map is about open city streets and outdoor cityscape. However, if you look closely at
the layout, you would see that streets are nothing more tharsleafgecorridos with corners

and the same principle applies. Hints are applied on corners (and many other places not shown

ar e

used

t o

=
WGSKM

n

Sour ce

separate

previous technical paper titl€gdP | a nta Wim Sketching Your Leveld which can be found
herehttp://source.gamebanana.com/tuts/10980

Copyright (c) 2013 Will2k. All rights reserved.

Commercial product copyrights belong to the respective owners

ar

http://source.gamebanana.com/tuts/10980

[11.2 - Brushwork

With the layout clearly planned as#ietched, it is time to start building your map and
here is the second cornerstone of your total optimization: optimized brushwork.

If you carelessly build your brushes, it will backfire at you in the end when you reach the
hints/areaportals phasgou will have a hard time aligning these brushes to your messy
brushwork and they will not be easipaced as | showed you in the 2 previous layouts.

Get in the habit of building your brushwork in standard sizes, mainly power of 2. It is
always agoodideatovee bi g brushes in 128,256 and 512 ul
brushes should be in 8,16,32,48 and 64 units. Not only you would have an easier time to
optimize a standard bloedize map, the compiler will have an easier time during vvis calcnlatio
and the compileitself will have easier time to figure out the visleaves even befone you
intervention to add hints and areaportals.

Make sure Asnap to grido i ssizeom&fdrblackihgi n Ham
the map with backbone base brusties) go down to 1 when it comes to details and fine tuning.
As an example, a building of 512 units high can be made of 4 blocks of 128 units each. This will
allow the engine to cut the visleaf horizontally and will give you greater flexibility for texture
application.

51246512

VisGrows:

HOGEEE v+ AP

For Help, press F1 186w 2961 512h ©(-966 -1460 416)

The above is a screenshot from de_spezia_pro (Hammer 3D flat view)

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

| highlighted the brushes of this building in red as well as the total building height (512).
You can see it is made of 4 brushes of 128 units high each; this way, everiafget to add
horizontal hints lagr, the compile toolwill figure out to include a visleaf cut at eashthe
brushesodo .intersection

The last thing that you need to take care of with brushwork is to try to have your brushes
as square as possible, whecomes to the backbone brushes of your level (the big regular world
brushes that are used to blog&ibility, to seal the level and support visleaves cuts). Feel free to
have the weirdest and most creative shapes that you can come up with (withmmtgheflthe
engine of course), when it comes to decorations and detail brushes. These brushes will be turned
to func_detail as we will see | ater and wonot
to do these calculations.

Whenever you havedd-shaped brushes or curves, think immediately of turning them to
details and keep your base brushes as square (or rectangle) as possible.

This is bombsite B in de_spezia_pro viewed in Hammer. You can see a lot of circular,
angular and oddhaped detail brushes and displacements. What happens if we hide everything in
Hammer keepingnly the world brushes visgroup?

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

