

March 8, 2013

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

Table of Contents

I ï Introduction

II ï The Source Engine

III ï Optimization Phases / Systematic Approach

III.1 ï Layout

III.2 ï Brushwork

III.3 ï Skybox

III.4 ï Nodraw

III.5 ï Func_detail / Displacements

III.6 ï Props Fade Distance

III.7 ï Hints

III.8 ï Areaportals

III.9 ï Occluders

III.10 ï Gameplay & Lighting

IV ï In-game Testing and Console Commands

V ï Conclusion

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

I -Introduction

Process optimization is the discipline of adjusting a process so as to optimize some

specified set of parameters without violating some constraints. The most common goals are

minimizing cost, maximizing throughput, and/or efficiency. When optimizing a process, the goal

is to maximize one or more of the process specifications, while keeping all others within their

constraints.

If you have been playing my maps or reading my papers/tutorials, you would have

deduced by now that I am a big fan of optimization, and it is quite honestly my favorite topic

when it comes to the Source engine. But even if you havenôt noticed my ñintimateò relation with

optimization, you will do now after reading this tutorial J.

You might be wondering why I am so much into optimization; the reason is very simple:

Most of my career so far revolved around optimization, more specifically process optimization.

How about that; not only I do optimization in the Source engine but I also do it in real life.

I started my career some 10 years ago in a multinational company, more precisely in the

manufacturing plant as a process and industrial engineer doing all sorts of optimization projects

on different machines to increase output/efficiency, reduce downtime, minimize loss/ scrap and

improve quality. Later on I moved to another company where the scope of optimization was

wider. I was now in charge of operations management where the optimization was more oriented

towards full processes such as manufacturing, supply chain, quality systems and so on. Even my

Masterôs degree thesis what about implementing a process optimization technique called ñJust-

in-Timeò in small to medium enterprises (SME).

Optimization became second nature to me and was applicable to every aspect of what I

do; thatôs why I feel at home when it comes to the Source engine optimization.

Make no mistake that, while visuals and gameplay are very important to any map,

optimization is the deal-breaker. Players will accept a ñnot-so-visually-stunningò map and they

will tolerate a slightly awkward layout, but no one will play a map that brings their gameplay to

a slideshow of horribly-low frame rate. Making an un-optimized map means that server admins

will only give it a first try and they will never touch it again.

What a waste then, of long and stressful hours spent building your level, to have no one

willing to play it except maybe yourself. But fear not as I shall go through the optimization

process in a methodical way, backed with screenshots (in-game and in-editor), in the hope of

making you intimate with this ñfeared-by-beginnersò process. This tutorial will put you on the

right track to master the optimization process but will require perseverance from your side and

lots of test maps for trial and error experience.

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

I I -The Source Engine

If you know your enemies and know yourself, you can win a hundred battles without a

single loss.

If you only know yourself, but not your opponent, you may win or may lose.

If you know neither yourself nor your enemy, you will always endanger yourself.

This, now popular idiom used by military and non-military strategists, is taken from the

last verse of Chapter 3 from the book ñThe Art of Warò written by the Chinese military general,

strategist and tactician Sun Tzu (544ï496 BC). The book is highly recommended to read and can

prove very useful even on your personal life level.

You might be thinking that this is a nice idiom but what does it have to do with our

optimization issue. Remember the title of this paper? Itôs winning your optimization ñbattleò

against the Source engine; the strategy devised by Sun Tzu perfectly fits our scenario.

In order to win, you need to know yourself (skills and optimization techniques), and

equally important is to know your ñenemyò (the Source engine; and Valve will have to excuse

me for this comparison J)

Despite getting many updates and facelifts lastly seen in the CSGO version, the Source

engine still partly relies on rather old principles dating from the time of the original Quake

engine created by John Carmack in the mid-nineties. Believe it or not, Source still has bits and

pieces reminiscent of Quake.

The Source engine uses Binary Space Partition (BSP) as a method to compute visibility.

BSP is a method for recursively subdividing a space into convex sets by hyperplanes. This

subdivision gives rise to a representation of objects within the space by means of a tree data

structure known as a BSP tree.

Binary space partitioning was developed in the context of 3D computer graphics in the

1970s, where the structure of a BSP tree allows spatial information about the objects in a scene

that is useful in rendering, such as their ordering from front-to-back with respect to a viewer at a

given location, to be accessed rapidly.

While some games use ñvisibility from a pointò approach, which is mostly implemented

in real time, and visibility is determined from the current viewpoint only, the BSP uses ñvisibility

from a regionò approach.

This is a kind of visibility calculation that is mostly used for indoor settings, making use

of the limited viewing possibilities between rooms. The rooms are termed cells, and doors

between these cells are called portals. In a pre-computation step, the data is analyzed for the

potentially visible set (PVS) from all positions in a single cell.

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

This is done for all cells in the data set. Current implementations in games use mostly

pre-computed level data in the final product, as pre-computations are too time-consuming to be

done after the loading of a level. One of the benefits of this method is that it is very efficient, and

that other things, like radiosity and shadows, can often be calculated in the same procedure, once

the process is started out of the level editor. The main drawback is the enormous memory

consumption.

The rendering process in the BSP can be described as follows: The map is carved up into

convex regions that become the leaves of the BSP tree, and anytime the camera is positioned

within a level, it is contained in exactly one of these convex regions. The leaves are grouped

together with neighboring leaves to form clusters; exactly how these clusters are formed is

determined by the tool that creates the BSP file. For each cluster, a list of all of the other clusters

which are potentially visible is stored, and is referred to as the potentially visible set (PVS).

To render the map, first the BSP tree is traversed to determine which leaf the camera is

located in. Once we know which leaf the camera is in, we know which cluster it is in

(remembering that each leaf is contained in exactly one cluster). The PVS for the cluster is then

decompressed giving a list of all the potentially visible clusters from the camera location. Leaves

store a bounding box which is used to quickly cull leaves that are not within the viewing frustum.

Now if all this necessary explanation made you dizzy, then fear not as I shall display

couple of screenshots where you can actually see the above in action in-game (PVS, leaves)

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

In this first screenshot (map de_cortona), you can see some red lines that connect with

each other to form a 3D cube (in this case a rectangular cuboid to be more accurate). This 3D

cube is none other than the famous leaf that we have been talking about; itôs called visleaf in the

Source engine and I shall be using this nomination from now on in the rest of this paper.

In this second screenshot, the 3D cube is still there but now we see other red cubes of

different sizes (and shapes) that are adjacent and connected to our initial visleaf. This is the

potentially visible set or PVS. It simply shows all other visleaves that the visleaf we are standing

in, can ñseeò and have a direct line of sight as stored in the visibility matrix of the BSP tree

explained earlier.

 In simpler words, the visibility from a region is pre-computed during compile time and

depends on the visleaf that the camera is in (the player is actually a camera) and not on the actual

location where the player is standing. If you are standing in visleaf A and the pre-computed data

in the PVS instructs the engine that visleaves B,C and D are visible, then the engine will draw

these leaves and their content regardless of where you stand in the visleaf A, and even if you, the

player, cannot directly see these visleaves.

 Now you need to clear your mind and focus with me. I am going to summarize the

optimization process and purpose in one easy sentence that you need to memorize. Understand

this sentence very well and you will understand the whole point of optimization and get on the

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

fast track to master it. If you fail to grasp the meaning of this sentence, then you will always have

losing fights against the Source engine, randomly placing hints and areaportals without knowing

really what you are trying to achieve.

Your ultimate goal is to make a specific visleaf ñseeò the least amount of

adjacent leaves thus preventing the engine from rendering the content of these

ñunseenò leaves which will reduce engine overhead and increase frame rate.

 Thatôs the essence of optimization in all its simplicity. All the techniques that we will go

through in this paper have a unified goal of fulfulling the above statement. Whether itôs hints and

areaportals, or func_detail and nodraw, it is all about reducing the number of visleaves in the

PVS, and reducing the amount of content to be rendered, thus preventing the engine from over-

rendering.

 If you are interested in going into more details of the BSP method and file format/coding,

then these 2 links shall prove to be very useful.

http://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml

Paper by Max McGuire (07 June 2000)

https://developer.valvesoftware.com/wiki/Source_BSP_File_Format

Valve Developer Community Article

III ï Optimization Phases / Systematic Approach

As with any other process, a systematic approach that can be used in every map is highly

needed; there is absolutely no point in adding occluders to your map as a first optimization job if

your layout, skybox and brushwork are totally un-optimized. The following is a standard

sequence that I personally use in my maps and that will help you make your optimization process

a fairly straightforward progression.

I I I.1 - Layout

 As surprising as it may seem, optimization starts with the map layout itself. A poor layout

can be a hell to optimize while a well-thought layout can pass through with minimal

optimization. If your layout is inherently wrongly devised, then all the hints and areaportals in

the world wonôt do you good.

Keep in mind the basics of the Source engine and the bsp discussed earlier in paragraph II

to aid you in the layout planning: remember that the bsp is more suited to indoors, rooms and

corridors. But what about the outdoors I hear you ask? Well, the outdoors in Source are

http://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml
https://developer.valvesoftware.com/wiki/Source_BSP_File_Format

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

ñcamouflagedò indoors where streets/roads and plazas/arenas replace rooms and corridors on a

larger scale, and the same layout techniques apply.

Whenever possible, try to avoid unnecessary open areas with unbroken line of sight

(LOS), implement corners to break LOS, add solid structures like buildings or walls to also break

LOS. Note that it is possible to have an open-ended map (like de_lake in CSGO) without corners

and solid structures, however it will require more optimization and the end frame rate will be

lower than a proper ñcorridorò map.

Your general map layout with corners and properly placed solid structures will greatly

help when you reach the phase of hints/areaportals and occluders. In fact, your layout should be

laid in a way to help implement these brushes. Letôs have a look at the layout of de_cortona in

the next pic (classic figure of 8): blue lines denote areaportals while purple ones are hint brushes.

This is not the actual scheme that I used but it should give you an idea how the layout itself is

laid to help implement hints and areaportals at a later stage.

Corners are very useful to have those angular 45° hints to eliminate direct line of sight

between the opposite sides of the corner. Areaportals are generally placed at hallway/corridor

ends to delimit and separate areas (donôt worry, hints and areaportals will be explained later; for

now, just focus on their placement and its relation to the layout).

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

Another map with more open-ended layout and gameplay: cs_east_borough.

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

Remember when I told that outdoors in Source are just ñconcealedò indoors? Hereôs your

proof. The map is about open city streets and outdoor cityscape. However, if you look closely at

the layout, you would see that streets are nothing more than large-scale corridors with corners

and the same principle applies. Hints are applied on corners (and many other places not shown

here) while areaportals are used to separate areas at each streetôs end.

To go into details about layout planning and sketching, I recommend reading my

previous technical paper titled ñPlanning to Win Sketching Your Levelò which can be found

here http://source.gamebanana.com/tuts/10980.

http://source.gamebanana.com/tuts/10980

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

I I I.2 - Brushwork

With the layout clearly planned and sketched, it is time to start building your map and

here is the second cornerstone of your total optimization: optimized brushwork.

If you carelessly build your brushes, it will backfire at you in the end when you reach the

hints/areaportals phase; you will have a hard time aligning these brushes to your messy

brushwork and they will not be easily placed as I showed you in the 2 previous layouts.

Get in the habit of building your brushwork in standard sizes, mainly power of 2. It is

always a good idea to have big brushes in 128,256 and 512 unitsô size while medium and small

brushes should be in 8,16,32,48 and 64 units. Not only you would have an easier time to

optimize a standard block-size map, the compiler will have an easier time during vvis calculation

and the compiler itself will have easier time to figure out the visleaves even before your

intervention to add hints and areaportals.

Make sure ñsnap to gridò is enabled in Hammer and keep the grid size on 8 for blocking

the map with backbone base brushes then go down to 1 when it comes to details and fine tuning.

As an example, a building of 512 units high can be made of 4 blocks of 128 units each. This will

allow the engine to cut the visleaf horizontally and will give you greater flexibility for texture

application.

The above is a screenshot from de_spezia_pro (Hammer 3D flat view)

Copyright (c) 2013 Will2k. All rights reserved. Commercial product copyrights belong to the respective owners

I highlighted the brushes of this building in red as well as the total building height (512).

You can see it is made of 4 brushes of 128 units high each; this way, even if you forget to add

horizontal hints later, the compile tools will figure out to include a visleaf cut at each of the

brushesô intersection.

The last thing that you need to take care of with brushwork is to try to have your brushes

as square as possible, when it comes to the backbone brushes of your level (the big regular world

brushes that are used to block visibility, to seal the level and support visleaves cuts). Feel free to

have the weirdest and most creative shapes that you can come up with (within the limits of the

engine of course), when it comes to decorations and detail brushes. These brushes will be turned

to func_detail as we will see later and wonôt affect visibility calculations or the time it takes vvis

to do these calculations.

 Whenever you have odd-shaped brushes or curves, think immediately of turning them to

details and keep your base brushes as square (or rectangle) as possible.

This is bombsite B in de_spezia_pro viewed in Hammer. You can see a lot of circular,

angular and odd-shaped detail brushes and displacements. What happens if we hide everything in

Hammer keeping only the world brushes visgroup?

